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Abstract

In complex dynamics, Hubbard trees offer a combinatorial description of the dy-
namics of post-critically finite (PCF) polynomials. What are the analogous ob-
jects in a non-Archimedean setting: what is a p-adic Hubbard tree? We explore
this question by studying the critical orbit trees associated to quadratic maps
fc(z) = z2 + c, with c ∈ Zp (for p > 2).

Complex Setting

The Hubbard tree Hf of a PCF polynomial f is a finite tree in the Julia set,
connecting all points contained in the critical orbits. The action of f on Hf and
the embedding of Hf in the complex plane (up to isotopy class) captures all of the
important information of the global dynamical system f : C→ C (see [2], [8]).
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periodic. The point '°1
i (0) is called the center of Ui. The inductive step is done by

observing that, if there is a critical point in Ui, its image is necessarily the center
of Uf§(i) since in this open set, the center is the only point which is preperiodic.
We then have di possible choices for 'i. Finally, the number of possible choices for
the whole family ('i) is
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In particular, if d = 2, there is one simple critical point (so with di = 2) in the
unique cycle, so one choice for the family.

Remark. Even if there are choices for the 'i, for each i the center '°1
i (0) of Ui is

uniquely determined.

3. The Hubbard tree.

In the following, f is a polynomial of degree d ∏ 2 such that every critical point
is periodic or preperiodic. Remember that this implies that f is sub-hyperbolic
and that Kf is connected and locally connected. We keep the notations of the two
preceding sections. In particular, each Ui is equipped with a center, which enables
us to define allowable arcs.

Remember that if x and y are two points in Kf , there exists a unique allowable
arc [x, y]f with extremities x and y, and that if (xs) is a family of points in Kf ,
the set

S
[xs1 , xsi ]f is a finite topological tree, called the allowable hull of the xs.

Definition 4.1. We will call the Hubbard tree of f the allowable hull Hf of
the union of the forward orbits of the critical points.
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Figure 1. An example of Hubbard tree.

Figure 1: An example of a Hubbard tree from [2], an invariant subset of the Julia set.

Non-Archimedean Setting

We view Zp as a subtree of the Berkovich project line over Cp, endowed with the
p-adic metric. Each vertex of the tree is a disk with rational radius of the form
p−n, denoted D(a, r). Two vertices are connected by an edge (branch) if one disk
is contained in the other, so each point has p edges branching off of it. Zp is exactly
the set of ends of the branches, and the top of the tree is the Gauss point D(0, 1).
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Figure 2: The top of the Z3 tree.

For fc(z) = z2 + c, c ∈ Zp, we suggest the following Hubbard tree analogy:

Definition: The critical orbit tree for fc is the convex hull of the critical
orbit in the Zp tree, together with the induced action of fc. The critical
orbit tree (mod p) is the subtree consisting of residue classes (mod p).

We say that a point α has orbit type (m,n) if m and n are the least integers
such that fm+n(α) = fm(α). Then m is the tail length and n is the cycle length
of the orbit of α.

Main Results

To understand the critical orbit tree structures for fc, it is necessary to study the
behavior of the critical orbit (mod p). The periodic case may be deduced from
([1], [4], [6] and [9]), based on the existence of an attracting n-cycle:

Theorem 1: Periodic (mod p)

Let p ≥ 3 and consider the critical orbit for fc(z) = z2 + c, c ∈ Zp. If 0 has
orbit type (0, n) (mod p), then either 0 is periodic of exact period n or 0 has
infinite orbit, with orbit type (mi, n) (mod pi) for all i ≥ 1.

The pre-periodic case builds on the work from [6] and [7] on the length of periodic
cycles in Zp.

Theorem 2: Pre-periodic (mod p)

Let p ≥ 3 and consider the critical orbit for fc(z) = z2 + c, c ∈ Zp. If 0 is
strictly pre-periodic with orbit type (m,n) (mod p), then either 0 has orbit
type (m,n) over Zp or there exists some k ≥ 1 in Z such that
1 0 has orbit type (m,n) (mod pi) for all i ≤ k, and
2 0 has orbit type (m, r · n) (mod pj) for all j > k, with r|(p− 1).
Otherwise, 0 has infinite orbit, with orbit type (m,ni) (mod pi) for all i ≥ 1.

A key piece of the proof is the fact that if 0 has tail length m (mod p), then the
tail length is fixed at m when the critical orbit is calculated modulo higher powers
of p, even if the orbit of 0 is infinite over Zp.
Remark: There is a finite number of PCF parameters in Zp. The work of [7]
and [10] gives a uniform bound on the total number for given prime p.

Theorems 1 and 2 also have the following implications on the tree structures of
finite critical orbits in Zp:

Theorem 3: Critical Orbit Trees in Zp

Again let p ≥ 3 and suppose 0 has finite orbit for fc(z) = z2 + c, c ∈ Zp.
1 If 0 is periodic of exact period n, the critical orbit tree coincides with the
critical orbit tree (mod p). It is a finite tree with a single vertex of degree n,
and fc(z) acts on the n end points by a cyclic permutation.

2 If 0 is strictly pre-periodic with orbit type (m,n), the critical orbit tree
either coincides exactly with the critical orbit tree (mod p) or it differs by
one instance of branching.

Remark: Linearization gives a bound on how far into the Zp tree the branching
can occur, for given prime p, and consequently there is a finite number of possible
critical orbit trees for PCF parameters in Zp.

Examples

In light of Theorem 3, it is straightforward to calculate all possible finite critical
orbit trees for a given p. We give the complete list for p = 3 and p = 5.
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Figure 3: The 4 distinct finite critical orbit trees in Z3.

Note that the (2,3) tree matches the (2,1) tree (mod 3) and then branches once
below (mod 32). For p = 5 we have an example of 2 distinct critical orbit trees
that correspond to orbit type (2,2).
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Figure 4: The 7 distinct finite critical orbit trees in Z5.

Remark: Going beyond the finite orbit trees for p = 3, we can give a com-
plete description of the orbit trees for all c ∈ Z3 by exploiting the existence of
linearization disks near periodic cycles, as detailed in [3] and [5].
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